Laika rindu analīze ir viens no galvenajiem statistikas elementiem, jo īpaši ekonomikas kontekstā. Lai gūtu labu izpratni par kļūdu analīzi un kvalitātes aplēsēm programmā Excel, šajā pamācībā jūs tiksiet iepazīstināti ar praktisku lietojuma piemēru. Tas tiek darīts, izmantojot piemēru ar automobiļu piegādātāja gadījumu izpēti. Jūs uzzināsiet, kā salīdzināt prognozes ar faktiskajām vērtībām un kvantitatīvi novērtēt prognožu kvalitāti, izmantojot kļūdu analīzes.
Galvenie secinājumi
- Jūs uzzināsiet, kā Excel programmā var salīdzināt prognozes un faktiskās vērtības.
- Uzzināsiet, kādus kļūdu rādītājus izmanto, lai novērtētu prognozes kvalitāti.
- Beigās jūs varēsiet aprēķināt variāciju koeficientu un vidējo kvadrātisko kļūdu (RMSE).
Soli pa solim
Sāciet, ievadot Excel programmā 2019. gada vērtības kā prognozes un 2020. gada vērtības kā faktiskās vērtības. Pārliecinieties, ka skaitļi ir pārnesti pareizi, lai radītu stabilu pamatu saviem aprēķiniem.
Lai veiktu analīzi, jums ir nepieciešami izejas dati par abiem gadiem. Jums jānodrošina 2020. gada skaitļi un pēc tam jāintegrē 2019. gada prognozes. Šīs vērtības kalpos par pamatu jūsu aprēķiniem.
Tagad kopējiet 2020. gada neapstrādātos datus darba telpā un ielīmējiet tos pilnībā. Lai aprēķini būtu skaidri strukturēti, ieteicams izveidot atsevišķas kolonnas prognozēm un faktiskajām vērtībām.
Nākamajā solī no faktiskajām vērtībām jāatņem prognozes, lai aprēķinātu kļūdas. Lai to izdarītu, izmantojiet formulu "kļūda = faktiskā vērtība - prognoze". Velciet šo aprēķinu pa visiem datu punktiem, lai kvantitatīvi noteiktu visas kļūdas.
Kad esat aprēķinājis kļūdas, nākamais solis ir šo kļūdu izlīdzināšana ar kvadrātu. Tas nozīmē, ka katru kļūdu reizināt ar sevi, tādējādi iegūstot kvadrāta kļūdas.
Tagad aprēķiniet kļūdu kvadrātu vidējo vērtību. Lai to izdarītu, izmantojiet Excel funkciju "Vidējais" un daliet kvadrātu kļūdu summu ar novērojumu skaitu. Tādējādi iegūsiet vidējo kvadrātkvadrātkļūdu.
Kad vidējā kvadrātkvadrātkļūdu vērtība ir noteikta, no šīs vidējās vērtības iegūstiet kvadrātsakni. Tā iegūst vidējo kvadrātkvadrātisko kļūdu (RMSE). Šī vērtība ir būtiska, lai novērtētu prognozes kvalitāti.
Tagad vēlaties aprēķināt arī faktisko vērtību vidējo vērtību. Lai to izdarītu, atkal izmantojiet funkciju "Vidējais" un atlasiet attiecīgās faktiskās vērtības. Šis vidējais lielums ir svarīgs turpmākai variācijas koeficienta interpretācijai.
Nākamajā solī jūs aprēķināsiet variāciju koeficientu (CV). CV aprēķina, dalot RMSE ar faktisko vērtību vidējo vērtību. Tādējādi iegūstiet procentuālu kļūdu atspoguļojumu salīdzinājumā ar faktiskajām vērtībām, kas ļauj novērtēt jūsu prognožu kvalitāti.
Būtiska ir variācijas koeficienta interpretācija. CV 0,08 nozīmē zemas relatīvās svārstības un līdz ar to augstu prognozes kvalitāti. Šo skaitli un savus secinājumus varat ievadīt arī atsauces tabulā, lai rezultātus būtu vieglāk saprast.
Kopsavilkumā jūs esat analizējuši prognozes un faktiskās vērtības Excel programmā vairākos posmos. Kļūdu aprēķināšana, izlīdzināšana kvadrātu veidā, vidējo vērtību noteikšana un visbeidzot variāciju koeficienta noteikšana ir pamatprocedūras, lai novērtētu laikrindu analīzes kvalitāti.
Kopsavilkums
Šajā rokasgrāmatā jūs izpētījāt, kā analizēt laikrindas programmā Excel, salīdzinot prognozes ar faktiskajām vērtībām. Jūs esat iemācījušies, kā aprēķināt kļūdas, izlīdzināt tās un kvantitatīvi novērtēt savu prognožu kvalitāti. Nosakot variāciju koeficientu, tagad jums ir iespēja labāk novērtēt nākotnes prognozes.
Biežāk uzdotie jautājumi
Kā es varu vizualizēt faktiskās vērtības un prognozes programmā Excel?Izveidojot atsevišķas kolonnas faktiskajām vērtībām un prognozēm un ievadot šajās kolonnās atbilstošās vērtības.
Kā aprēķināt RMSE? RMSE aprēķina, ņemot kvadrātsakni no kļūdu kvadrātu vidējās vērtības.
Ko nozīmē augsts variācijas koeficients? Augsts variācijas koeficients norāda uz lielu relatīvo variāciju, kas liecina par zemāku prognozēšanas kvalitāti.
Kādēļ ir svarīgi kļūdas kvadrētēt? kļūdu kvadrēšana nodrošina, ka pozitīvās un negatīvās novirzes netiek savstarpēji neitralizētas, aprēķinot vidējo vērtību.